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ABSTRACT

The present, more advanced technique for developing an analytical transport property

equation as ( )T,ρηη =  for a pure fluid is based on the residual concept superimposing

three parts: the diluted gas, the excess terms and the critical enhancement. Said

technique is essentially correlative and requires experimental data as evenly distributed

as possible over the whole thermodynamic PρT surface. Because the final correlation

relies only on the available data, this poses the question of whether a completely

empirical correlation ( )T,ρηη =  could be developed directly from data alone. A

multilayer feedforward neural network (MLFN) technique is adopted for developing the

viscosity equation of R123. The results obtained are very promising, reaching a final

Absolute Average Deviation of 1.02 % on the currently available 169 primary points,

and are a significant improvement over those of the corresponding conventional

equation in the literature. The method requires the dedicated EoS for the fluid to be

known in order to convert the experimental P,T into the independent variables ρ,T, and

this EoS is rarely available. With a view to overcoming this difficulty, an implicit

viscosity equation of state in the form of ( )PTT ,η= , avoiding the density variable, is

obtained using the MLFN technique, starting from the same data sets as before. The

prediction accuracy achieved is comparable with that of the former equation

( )T,ρηη = .

KEY WORDS: Feedforward neural networks, R123, 2,2-dichloro-1,1,1-trifluoroethane,

viscosity correlation techniques, viscosity equation of state.
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1. INTRODUCTION

The state of the art about viscosity surfaces representation, on which the present work

focuses, suggests at least two approaches to its calculation.

First, predictive or semipredictive models can be used. These models are often based

on Corresponding State Theory [1,2,3,4] and, in many cases, they are capable of

estimating the property with an accuracy level sufficient for engineering calculations.

Alternatively, dedicated viscosity equations of state can be used. These are semi-

empirical equations with a certain theoretical background, but contain some coefficients

fitted on experimental viscosity data. Generally speaking, these equations are in the

form of ( )ρηη ,T= , where η , T and ρ  are viscosity, absolute temperature and density,

respectively. In conventional dedicated viscosity equation development, the coefficients

are not obtained from direct experimental data regression. Since the viscosity data are

inevitably related to the experimentally-accessible (T,P) variables, an equation of state is

needed to convert (T,P) into (T,ρ). Moreover, viscosity data at pressures approaching

zero have to be extrapolated to fit the coefficients of the diluted term in the viscosity

equation. The aim of the present work is to develop a viscosity equation in (T,P)

variables, based directly on experimental data through a multilayer feedforward neural

network (MLFN), which can be considered as one of the most powerful and flexible

regression techniques for function approximation.

The study is devoted to 2,2-dichloro-1,1,1-trifluoroethane (R123), for which a

conventional dedicated viscosity equation has already been developed [5], thus enabling

a comparison of the results. In addition, a large amount of data is available for

refrigerants.
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2. VISCOSITY DEDICATED EQUATION

2.1 Conventional technique

According to the residual viscosity concept [6], a viscosity correlation is obtained in

the following form:

( ) ( ) ( ) ( )ρηρηηρη ,,, 0 TTTT CR ∆+∆+= (1)

where :

( )T0η  is the dilute-gas term representing the zero density limit of gas viscosity. Some

theoretical guidance on the analytical form of this term can be derived from the kinetic

theory of gases. This term has to be treated independently of the other two and the data

required for regressing the coefficients are obtained at atmospheric pressure or below,

while it is common to extrapolate such data to the zero density limit.

( )ρη ,TR∆  is the residual or excess function for the calculation of which the diluted gas

and the critical enhancement terms must be subtracted from the actual viscosity value.

Experience shows that third- or higher-order polynomials of reduced density are often

suitable forms for representing this term, disregarding temperature dependence,

particularly when the data base is limited. For polar fluids in the vapor phase, the

quantity ( )Tρη ∂∂  depends on temperature and it is positive for higher T and negative

for lower T. As a consequence, more complex analytical forms for the excess function

are needed.

( )ρη ,TC∆  is the critical enhancement term that describes the behaviour of a fluid in the

critical region, where the transport properties are influenced by long-range fluctuations.

The critical enhancement of the transport properties can be described by a crossover
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theory [7,8]. This term has a modest influence on viscosity and only when very close to

the critical point; it is consequently not taken into account in this work.

In order to calculate any ( )PT ,ηη =  value, an equation of state is necessary for

variable conversion. Considering how sensitive viscosity is to density in the dense

phase, such an equation has to be very accurate.

2.2 Dedicated viscosity equations for R123

Tanaka and Sotani developed a dedicated viscosity equation using the procedure

explained elsewhere [6]. To convert the (T,P) variables into (T,ρ) they adopted the

MBWR32 equation of state from Younglove and McLinden [9].

Tanaka and Sotani [5] regressed the dilute-gas function from data measured at

atmospheric pressure. Because viscosity data in this condition are lacking, they

generated further values by means of the Chapman-Enskog equation. In this way, they

obtained a polynomial representation of ( )T0η . The critical enhancement term was

neglected since no experimental data are available close to the critical point.

Regarding the excess term, ( )ρη ,TR∆  was split into two parts:

( ) ( ) ( )ρηρηρη h1R T,T ∆+=∆ (2)

where ( )ρη T1  takes into account the density dependence al low density values. This is a

polynomial with coefficients fitted on vapor viscosity data. The term ( )ρηh∆  is the

high-density contribution, the form of which is a third-degree polynomial combined

with a hyperbolic term. For the analytical forms and the coefficient values, reference can

be made to the original article [5]. The validity ranges of the Tanaka and Sotani

viscosity equation are 253≤T≤423K and 0≤ ρ ≤1608 3mkg . Following the Authors
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validation the final equation reaches an accuracy of 1.17 % on primary data and 2.25 %

on the total data sets.

3. NEURAL NETWORKS

In the preceding paragraph it was pointed out that:

1. though the structure of the conventional viscosity equation sounds theoretically well-

based, experimental data distributed over the whole PρT surface are needed to

regress the coefficients of the three contributions;

2. it is by no means easy to find the most suitable analytical form for representing the

density dependence of the residual term;

3. the fitting procedure is not direct from the data, which have to be treated in order to

split the influences of the three terms;

4. a highly accurate equation of state is needed for converting the variables (T,ρ) into

(T,P).

Because experimental data on the widest portion of the PρT surface are needed for

the development of a conventional viscosity equation dedicated to a target fluid, it

seems reasonable to test a single correlative technique based directly on all the available

data. Clearly, the analytical form of the new model has to prove highly flexible in fitting

the experimental viscosity surface of a generic fluid. The optimal characteristics

expected for this form are: a) an a priori known form, b) a unique and suitable form for

a larger number of target fluids. It was established during the preliminary stages that

neural networks, applied as function approximators, have demonstrated the required

characteristics to a high degree.
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Moving on from these remarks, a new correlation technique is proposed here, based

on neural networks. The heart of the problem is to fit such a correlation on the available

viscosity data for developing a neural network viscosity equation. Among different

neural network architectures, the Multilayer Feedforward Network with only one hidden

layer seems to be the most effective as a universal approximator of continuous functions

in a compact domain [10,11,12]. In this architecture there are several neuron layers

(multilayer) and the information goes in only one direction, from input to output

(feedforward), i.e. from left to right in the following Fig. 1. The Fig. 1 shows the general

architecture of a MLFN with a hidden layer, which is the analytical tool used in the

present work as a viscosity equation model.

The I-1 inputs Ui enter the I-1 neurons of the input layer. The inputs Ui represent the

independent variables of the problem. The input information is not manipulated by the

input layer neurons, it is only transmitted. The last neuron, at the number I, receives the

Bias 1. The J neurons of the hidden layer receive the weighted sum of signals from the

input layer. A non-linear transfer function is applied to this sum. The neuron number

J+1 receives only the bias value. If Hj is the output of the j hidden layer, this is

Jj1UwfH
I

1i
iijj ≤≤




= ∑

=

(3)

2BiasH 1J =+ (4)

where f is the transfer function and wij are the weighting factors. Finally, the K neurons

of the output layer receive the weighted sum of signals from the hidden layer and, once

again, apply a non-linear transfer function to the sum. The outputs Sk represent the

dependent variables of the problem. If Sk is the output of the output layer, i.e. the final

output of the MLFN, this is:
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Kk1HwfS
1J

1j
jjkk ≤≤





= ∑

+

=

(5)

Though the architecture is fixed, the MLFN is very flexible because both the number

of the neurons in the hidden layer J and the form of the transfer function f can be

chosen. The input I and the output K neuron numbers depend on the kind of problem to

solve. In addition, the two matrixes of the weighting factors wij [I × J] and wij [(J+1) ×

K] have to be defined case by case. When J and f have been chosen, the weighting

factors can be fitted on some sets of known outputs. This regression step is called a

training step. Bias 1 and Bias 2 are two constants able to make the convergence easier

and faster during fitting.

Some criteria have to be kept in mind in the choice of the transfer function f. This has

to be a continuous and derivable function and it has to be limited. The choice of the

analytical form of f does not affect the performance of the MLFN (which depends

strictly on the weighting factors wij and wij), but it does affect the training procedure.

The transfer function used in the present work has a sigmoid form:

( )
x2e1

1
xf βα −+

= (6)

Two positive parameters have been applied in eq. (6) to make the function’s

behaviour more flexible: α changes the activation span and β determines the steepness

of the sigmoid function. As a consequence of the choice of a transfer function, eq. (6),

α≤kS  for every k=1,K. In addition, the training step is easier if all the inputs are of the

same magnitude. That is why both input and output values are compressed here within

the same range by eqs. (7,8,9,10,13).

The analytical form of the present MLFN is:
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( )
x2e1

1
xf βα −+

= (6)

( ) ( )1xlnxg += (7)

imin,imax,

minmax
i VV

AA
u

−
−=

1Ii1 −≤≤ (8)

( ) ( )kmin,kmax,

minmax
k WgWg

AA
s

−
−= Kk1 ≤≤ (9)

( ) 1Wg
s

AS
expW kmin,

k

mink
k −








+−= Kk ≤≤1 (10)







= ∑

+

=

1J

1j
jjkk HwfS

Kk ≤≤1 (11)






= ∑

=

I

i
iijj UwfH

1 Jj ≤≤1 (12)

2BiasH 1J =+

( ) minmin, AVVuU iiii +−= 11 −≤≤ Ii (13)

1BiasU I =

where J is the number of neurons in the hidden layer, Amin and Amax are the allowable

range limits of the compressed input variables, Vmin,i and Vmax,i are the limits of the

independent input variables for the training set, and Wmin,k and Wmax,k are the limit values

of the output functions. The quantity Vi is the independent variable and Wk is the

dependent variable. Due to the characteristics of the present problem, the MLFN

parameters are set here to the following values:

1K

3I

=
=

         
0.12Bias

0.11Bias

=
=

         
95.0A

05.0A

max

min

=
=

        
005.0

0.1

=
=

β
α
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In this way the input variables and the output function have been both compressed in

the range 0.05÷0.95. To complete the MLFN definition, the following parameters have

to be calculated for each target fluid through a training step:  J, Vmin,i, Vmax,i, Wmin,k,

Wmax,k, wij, wjk. Since the MLFN architecture is always the same, its connotative contents

are in general the number of hidden layers, the number of nodes and the matrixes of

weighting factors wij and wjk. It has been established that a single hidden layer suffices

for representing a continuous function. The number J of neurones in the hidden layer

has to be found by subsequent trials: this number has to minimize the residual error

during the training procedure. In addition, for each number of hidden layer nodes, two

matrixes wij and wjk of coefficients have to be found. Determining the optimum number

of hidden nodes and fitting the two matrixes wij, wjk are part of the training procedure.

Given an experimental data set of output Sk, in the independent variables Ui, the

weighting factors are found by minimizing the following objective function by means of

an optimization procedure.

( )∑
=

−=
K

1k

2exp
k

calc
kob SS

K

1
f (14)

As in any optimization process, the optimized parameter set must not depend on the

algorithm assumed and several methods have to be tested for the same equivalent result.

4.  VISCOSITY NEURAL NETWORK EQUATION

Since an MLFN is a mathematical function that links some inputs with some outputs,

it seems reasonable to correlate viscosity data with the independent variables using this

technique. In order to verify the approximating capability of an MLFN regarding a
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viscosity equation, as a preliminary test we generated viscosity data from the Tanaka-

Sotani equation [5] and trained the neural network on those data.

In our case, eqs. (6-13), considering that I=3 and K=1, it becomes:

r1r2r1 WVTV ηρ === (15)

where the reducing critical parameters are: Tc=456.831K, Pc=3.6618 MPa and ρc=550

kg/m3. The viscosity reducing factor is: sPa8509.27
TNR

PM
H

61
c

31
A

61

32
c

21

c ⋅== µ  where M

is the molecular weight, R is the universal gas constant and NA is the Avogadro number.

The viscosity data generated amounted to 3674: 460 were used in the training step

and the remainder for validating the MLFN equation obtained. The generated data

enabled a regression of the parameters of the neural network. With reference to the

previous paragraph, the optimum number of neurons in the hidden layer in this case is

J=10. The weighting factors are 30 for the first matrix ijw  and 11 for the second matrix

jkw , for a total of 41 weighting factors. The values of the weighting factor ( ijw  and jkw )

matrixes are the fluid specific MLFN viscosity parameters.

Of the generated data, 3214 were used for validating the equation, which resulted in

an average absolute deviation (AAD) of 0.096 %, a bias of 0.003 % and a maximum

deviation of 0.94 %. These results suggest that the MLFN is a very valuable tool for

fitting a viscosity surface. The data are generally classified as primary or secondary and

only the former are used in the correlation regression. The guidelines for the screening

procedure are discussed in specialized textbooks, e.g. [6]. In the present work, partly

due to the paucity of the R123 experimental data available, the screening procedure

adopted was as follows. We maintained as primary the data considered by Tanaka and
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Sotani as primary in developing their equation, even if they were measured at

temperatures and pressures outside the validity range of their equation. We tested all

available experimental viscosity data versus the Tanaka-Sotani dedicated equation and

screened all data with deviations of less than 6 %. We also included data that were not

considered by Tanaka and Sotani, such as the data provided by Mayinger. The data

screened in this way were considered as primitive. Using these data, a first neural

network version was regressed. After this preliminary screening the first neural network

was tested versus the primitive data. Avoiding the sources with deviations higher than 2

%, a finer screening was done to identify the primary data, amounting to 169 in all, over

which the final viscosity-MLFN equation was fitted.

After the data screening, the weighting factors of the MLFN equation - which are the

new viscosity equation parameters for R123 in a general form ( )T,ρηη =  - can be

obtained. In addition to considering a viscosity equation of the previous form:

( )T,ρηη = (16)

which has to be coupled with an equation of state for variable conversion, an equation

system such as the one below could be written [13]:

( )
( )




=
=

T,PP

T,

ρ
ρηη

(17)

From this system a functional form ( ) 0,T,PF =η  could be derived, avoiding density as

a variable and consequently not requiring the use of a high accuracy equation of state for

the target fluid. From such F form, we propose extracting the functional form:

( )η,PTT = (18)
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by means of the former MLFN technique, always based exclusively on the experimental

data. The other possible form ( )η,TPP =  has been discarded due to the higher

difficulty of training the MLFN, while the form ( )P,Tηη =  cannot be considered for the

whole surface, because at saturation for a same ( )TP,T S  input couple, i.e. temperature,

the two viscosity values S
vap

S
liq ,ηη  have to be output.

Following the preceding procedure the two proposed MLFN have been obtained and

their parameters are listed in Tab. 1. For the viscosity explicit equation r1 TV = , r2V ρ=

and r1W η= , while for the temperature explicit equation r1 PV = , r2V η=  and r1 TW = .

In this last case the filter function ( )xg , eq. (7), is applied to 2V  instead to 1W .

The validity ranges for both the new viscosity equations are K423T170 ≤≤ ,

3mkg17605.4 ≤≤ ρ  and MPa34P107 6 ≤≤⋅ − .

The validation of the two new viscosity equations is reported in Tab. 2 together with

comparison with the Tanaka-Sotani dedicated equation. The data are as usually split into

primary and secondary classes as previously discussed. The primary set has been used

for the training step and consequently the corresponding AAD are to be considered as

the residual errors of the correlations. Regarding the temperature explicit equation the

training residual AAD, Tab. 1, refers to temperature, which is the dependent variable. In

Tab. 2 the AAD is calculated for viscosity values. Some further references are cited in

the work of Tanaka and Sotani, but anyway they considered them as secondary sources.

In addition we have not found those references an consequently we have neglected the

related data. Between data from Mayinger and Nabizadeh [17,18] and data from

Takahashi and Yokoyama [21,22] a discrepancy between 3.5 and 8.25 % was found at
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pressure greater than 1MPa in vapor phase and the reason may be the kind of

viscosimeter used. Consequently the sources [17,18] have been considered secondary.

CONCLUSIONS

A new method has been proposed for the development of a dedicated viscosity

equation and has been applied to the case of the refrigerant R123, for which a former

conventional dedicated equation was available. The new method is based on the

Multilayer Feedforward Network technique, which has demonstrated to be a powerful

and flexible universal function approximator, been able to reproduce with high accuracy

the viscosity surface of the former conventional equation. The method is completely

correlative and based directly on the available viscosity data. Two viscosity functions

are here proposed, the first is viscosity explicit ( )T,ρηη =  and the other one is

temperature explicit ( )η,PTT =  and does not require a high accuracy equation of state

for the variables conversion. The validity range of both the equations is

K423T170 ≤≤ , 3mkg17605.4 ≤≤ ρ  and MPa34P107 6 ≤≤⋅ −  which corresponds

to the primary data boundaries. The reached accuracy on primary data for both equations

is in the AAD range of 1÷2 % with a significative improvement with respect to the

conventional equation. This work shows that neural networks are promising tools for

transport properties equation development.
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Tab.1. Parameters for the two MLFN viscosity equations.
Viscosity explicit MLFN eq.: ( )rrrr ,T ρηη = Temperature explicit MLFN eq.: ( )rrrr ,PTT η=

i j wij j k wjk i j wij j k wjk

1 1 0.1500632E+04 1 1 -0.1691426E+04 1 1 0.6440240E+03 1 1 0.1712521E+04

2 1 -0.2908013E+04 2 1 0.3059703E+04 2 1 -0.3410896E+04 2 1 0.7175858E+04

3 1 0.2964611E+04 3 1 0.5545804E+03 3 1 0.5974824E+03 3 1 -0.5253422E+04

1 2 -0.5308147E+02 4 1 0.1245187E+04 1 2 -0.4088969E+04 4 1 -0.5870102E+04

2 2 0.1294263E+04 5 1 -0.1486148E+04 2 2 0.7838231E+04 5 1 -0.5929326E+04

3 2 -0.1516965E+04 6 1 0.1893007E+04 3 2 0.2326999E+03 6 1 -0.2490978E+04

1 3 0.1105456E+03 7 1 0.2026413E+04 1 3 0.1124305E+04 7 1 0.1225327E+04

2 3 -0.4978172E+03 2 3 -0.8897859E+04

3 3 -0.1607605E+02 3 3 0.5676846E+03

1 4 -0.1836850E+02 1 4 -0.1773198E+02

2 4 0.3303200E+03 2 4 0.2951690E+03

3 4 -0.3956871E+02 3 4 -0.5794737E+03

1 5 0.6168072E+03 1 5 -0.3993590E+02

2 5 -0.1511499E+04 2 5 0.5533852E+03

3 5 0.1912588E+04 3 5 0.1400350E+03

1 6 -0.6117513E+02 1 6 -0.2392280E+04

2 6 -0.1349390E+04 2 6 0.1304965E+05

3 6 -0.2979162E+03 3 6 -0.6789685E+03

min
r1min, TV ≡ 0,372128862 min

r1min, PV ≡ 2,02142E-06

max
r1max, TV ≡ 0,926272517 max

r1max, PV ≡ 9,17854607

min
r2min,V ρ≡ 0,008196364 min

r2min,V η≡ 0,399160894

max
r2max,V ρ≡ 3,203118255 max

r2max,V η≡ 200,6755631

min
r1min,W η≡ 0,399160894 min

r1min, TW ≡ 0,372128862

max
r1max,W η≡ 200,6755631 max

r1max, TW ≡ 0,926272517

J 6 J 6
training residual AAD % 1.02 training residual AAD % ( rT ) 0.383
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Tab. 2: Validation results of the viscosity explicit MLFN, eq. (16), and temperature explicit MLFN, eq. (18) and of the Tanaka-Sotani
dedicated equation [5] a.

Viscosity explicit MLFN, eq. (16) Temp. explicit MLFN, eq. (18) Viscosity dedicated eq from Tanaka-Sotani
Phase Range T

[K]
Range P
[MPa]

AAD
%

Bias
%

Max
%

AAD
%

Bias
%

Max
%

AAD
%

Bias
%

Max
%

NPT Method Ref

Primary data
L 200÷300 3.2÷33..6 1.91 -1.79 4.46 1.85 -1.81 4.57 6.09 (1.77) -6.05 (-1.64) 14.46 (3.66) 29 (9) TC 14(*)

SL 170÷320 - 1.12 -0.17 3.74 1.31 0.09 3.84 5.87 (1.77) -5.85 (-1.73) 25.21 (5.15) 23 (14) TC 14(*)

V 308÷363 0.1 1.03 1.03 1.75 0.91 0.51 1.42 0.69 0.47 1.77 4 CV 15
SL 273÷353 - 0.70 -0.11 1.72 0.37 0.29 0.69 1.68 -1.68 4.42 9 CV 16
L 233÷418 1.1÷20.7 1.02 0.94 3.83 1.33 0.86 4.06 1.89 (1.52) -0.31 (0.28) 5.59 (4.76) 62 (54) CV 19(*)

V 323÷423 0.13÷2.0 0.43 -0.09 0.91 0.40 -0.02 1.96 0.24 -0.09 0.82 42 OD 22
avg 1.02 0.01 4.46 1.12 0.04 4.57 2.70 (1.14) -2.05 (-0.31) 25.21 (5.15) 169 (132)**

Secondary data
SC 473÷523 4.0÷7.0 4.26 (-) -3.35 (-) 14.14 (-) - (-) - (-) - (-) 4.63 (-) -4.63 (-) 6.65 (-) 25 (0) OD 17(*)

V 303÷523 0.1÷3.5 2.14 (2.08) -0.75 (-1.97) 9.30 (7.00) -  (1.96) - (-1.92) - (8.32) 3.05 (1.93) -3.05 (-1.93) 7.17 (5.92) 244 (80) OD 17 (*)

SV 303÷443 - 3.66 (2.82) -3.00 (-2.07) 10.00 (6.62) - (2.61) - (-1.98) - (8.51) 2.38 (1.94) -2.37 (-1.92) 7.23 (4.83) 15 (13) OD 17 (*)

V 303÷423 0.1÷2.0 1.75 -1.26 8.87 1.46 -1.27 10.32 1.51 -1.51 7.49 31 OD 18
L 293 0.1 3.09 3.09 3.09 3.05 3.05 3.05 2.25 2.25 2.25 1 PCS 20

SV - 0.1÷2.5 3.70 (3.36) -3.26 (-2.90) 8.30 (7.21) - (3.08) - (-2.70) - (8.80) 2.76 (2.57) -2.75 (-2.56) 5.61 (5.61) 15 (14) OD 17 (*)

V 323÷423 0.13÷2.0 2.43 -2.38 8.55 2.37 -2.34 9.65 2.99 -2.99 7.73 47 C 21
avg 2.41 (2.27) -1.34 (-2.01) 14.14 (8.87) 2.12 -1.95 10.32 2.98 (2.18) -2.97 (-2.15) 7.73 (7.73) 378 (186)**

Overall 1.98 (1.67) -0.92 (-1.05) 14.14 (8.87) 1.64 -1.00 10.32 2.89 (1.75) -2.68 (-1.39) 25.21 (5.92) 547
a Methods: CV= capillary viscosimeter, TC=torsionally oscillating quartz crystal viscosimeter, OD=oscillating disk viscosimeter,
PCS=photon correlation spectroscopy, C=calculated [21].
(*) = for such sets the bracketed figures refer to experimental points falling inside the validity ranges of equations.
**  For the Tanaka-Sotani eq. 132 primary and 186 secondary data are in the validity range, while for the MLFN eq. (16) and eq. (18) all
169 primary data and 186 secondary data are in the validity range.



Figure captions

Fig. 1: General architecture of a MLFN.
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